

PREDICTION OF SUN TRANSIT OUTAGES IN AN
OPERATIONAL COMMUNICATION SATELLITE SYSTEM*

Xuyen T. Vuong and R. John Forsey, Member, IEEE
Telesat Canada
333 River Road
Ottawa, Canada
K1L-8B9

ABSTRACT

The method and the computer program used to generate sun transit predictions are described. The program is universal in that (i) the satellite can be at any longitude, (ii) the earth station can be located anywhere on earth, and (iii) the prediction is for any given year. The predictions allow earth station users to accurately predict the effect of sun transits on their operations well in advance.

INTRODUCTION

A sun transit outage occurs when the pointing angles from the receiving earth station to the satellite and to the sun are so nearly coincident that additional noise power presented by the sun causes the demodulator to operate below its threshold. Consequently, communication performance will be degraded below acceptable quality.

For a geostationary satellite and a fixed earth station, the sun transit outage occurs once a day for several minutes during a few days near the spring and fall equinoxes. The number of outages and their duration depend on the minimum tolerable C/N ratio and on the actual C/N ratio at the receiver input during sun transit. The latter, or equivalently, the additional solar noise power received, is affected by the coordinates of the satellite and of the earth station, the motion of the sun with respect to the earth, the solar disk temperature, and the antenna gain pattern of the receiving earth station.

Sun transit outages have been cited in the literature. A satellite system to avoid sun transit outage was proposed by Lundgren¹. Ito et. al.² provided solar outage measurements. Recently Loeffler³ supplied a rule of thumb for solar outage calculation.

In this report, the method and the computer programs used to provide accurate sun transit outage prediction will be described. The prediction includes time of sun transit peak degradation, sun transit outage duration, and C/N-degradation during sun transit. Comparison with measured data will also be made.

THE METHOD

As shown in Figures 1 and 3, E'E is a sunray passing through the earth station E, S is the satellite, and E'ES is the off-axis angle OFFAX.

As the earth revolves around the sun and spins on its own axis, the direction of the sunray E'E changes. Once a day, the sunray will lie in the plane which is perpendicular to the equatorial plane and contains SE. This coplanar instant is of interest because it is when the off-axis angle can be computed with ease and takes a minimum value for any day.

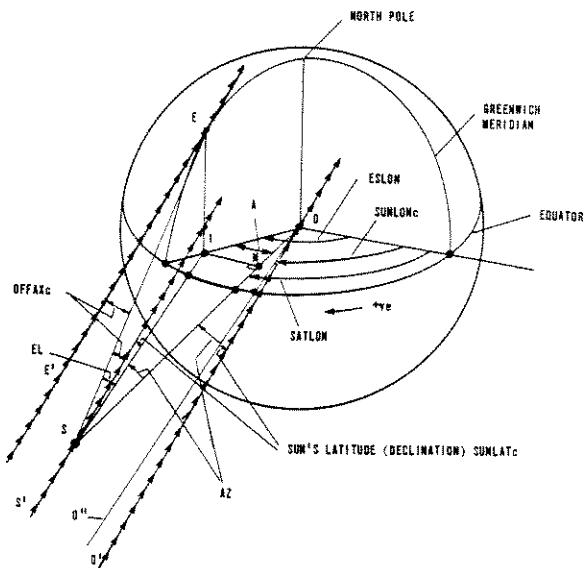


FIGURE 1: GEOMETRIC REPRESENTATION OF SUN TRANSIT. - COPLANAR INSTANT.

Let S'S and O'O be sunrays passing through the satellite S and the earth center O, respectively. Let their projections onto the equatorial plane be S'I and O'O. Since the sun is far away from the earth, it is valid to assume that all the sunrays are parallel. Consequently, S'I is parallel to O'O and the coplanar instant corresponds to the time when the sun has a longitude of SUNLONGc. From the geometry of Figure 1, SUNLONGc can be expressed as,

$$\text{SUNLONGc} = \text{SATLONG} - \text{AZ} \quad (1)$$

where SATLONG is the longitude of the satellite which takes a value from 0 to 360 (e.g. 120°W and 40°E correspond to 120 and 320 respectively) and AZ is the azimuth angle of the earth station with respect to the satellite which takes a negative value if the earth station is east of the satellite. This azimuth angle should not be confused with the more familiar azimuth angle of the satellite with respect to the earth station. Its relationship with the coordinates of the satellite and the earth station is derived in Appendix A.

*The original version of this paper was presented at the Satellite Communications Conference, Ottawa, Canada, June, 1983.

Note that by definition, the sun's longitude (latitude) is that of a sunray passing through the earth center. Its accurate prediction for a given time is complicated since it is a function of the motions of the moon and the neighboring planets. Once a year, the Nautical Office of the US Naval Observatory issues an almanac⁴ which contains the predicted position of the sun for the coming year. To avoid annual reference to the almanac, mathematical models have been developed to predict the sun's position many years in advance^{5,6}. The prediction based on the model described in Reference 5 is quite accurate for our purposes. Using the model, and by performing a one dimensional search, the time of the coplanar instant (and the corresponding latitude of the sun) can be found for any given day.

From the geometry shown in Figure 1, at the coplanar instant, the off-axis angle OFFAXc can be computed from the following:

$$\text{OFFAXc} = |\text{EL} + \text{SUNLATc}| \quad (2)$$

where SUNLATc is the sun's latitude at the coplanar instant, which has a negative value for a southern latitude, and EL is the elevation angle of the earth station with respect to the satellite, which takes a negative value if the earth station is located in the southern hemisphere. The relationship of EL with the coordinates of the satellite and the earth station is derived in Appendix A.

Figure 2 is a typical variation of the sun's latitude with respect to time for a given year (the year 1983). In this plot, the spring and fall equinoxes are on March 16 and Sept. 23, respectively, and the sun's latitude is positive from March 16 to September 23. The elevation angle, has a range somewhere from -8.67° to $+8.67^\circ$, depending on the latitude of the earth station and the longitude of the earth station, relative to that of the satellite. Thus, from the

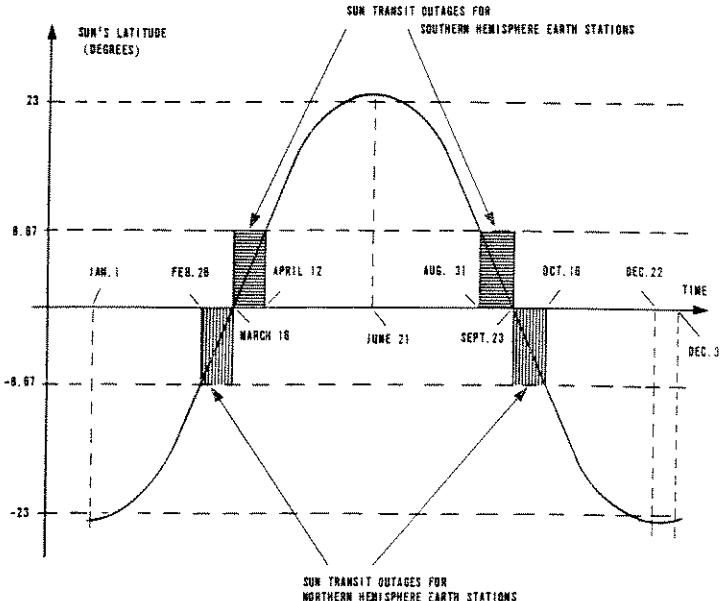


FIGURE 2: THE SUN'S LATITUDE AS A FUNCTION OF TIME FOR 1983 SHOWING POSSIBLE SUN TRANSIT OUTAGE PERIODS.

figure, the worst sun transit noise for a northern hemisphere earth station ($\text{EL} > 0$) occurs for some days in the intervals (Feb. 26, March 16) and (Sept. 23, Oct. 16), and those for a southern hemisphere earth station in the intervals (March 16, April 12) and (August 31, Sept. 23).

Next, we consider the geometry at times other than the coplanar instant. When the sunrays are not parallel to the plane SEI, then, as shown in Figure 3, the off-axis angle OFFAX can be computed from the following equation:

$$\text{OFFAX} = \arccos \left\{ \frac{\overline{SE}^2 + \overline{SK}^2 - \overline{EK}^2}{2 \cdot \overline{SE} \cdot \overline{SK}} \right\} \quad (3)$$

where the slant range \overline{SE} and the distances \overline{SK} and \overline{EK} , can be computed, as shown in Appendix B, from the coordinates of the earth station and of the satellite, and from the directions of the sunrays at both the coplanar instant and the noncoplanar instant under consideration

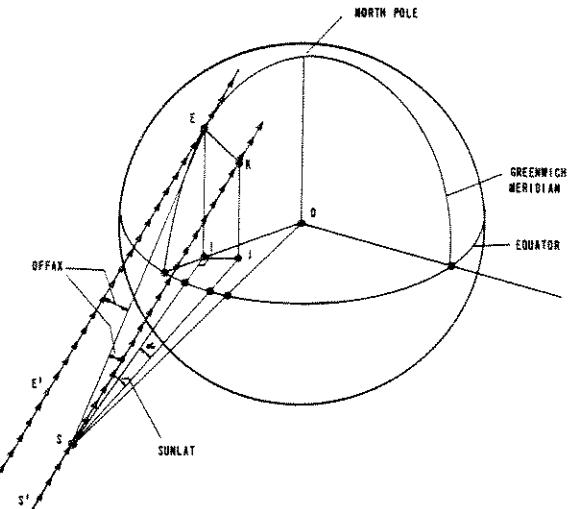


FIGURE 3: GEOMETRIC REPRESENTATION OF SUN TRANSIT. - NONCOPLANAR INSTANT.

Once the off-axis angle OFFAX is known, the solar noise temperature received at the receiver input, T_a , can be computed with the standard assumption that the sun is a disk of constant temperature, T_s , and of 0.5° diameter^{1,7}.

$$T_a = \frac{T_s G}{4\pi} \iint f(\theta, \phi) \sin \theta d\theta d\phi \quad (4)$$

Sun's Solid Angle

where θ and ϕ are two of the three spherical coordinates expressed in radians, the sun's solid angle is defined by the shaded area shown in Figure 4, G is the earth station antenna maximum gain expressed as a power ratio, and $G_f(\theta, \phi)$ is the antenna gain pattern expressed as a power ratio. This can be estimated from the following Gaussian model^{8,9}.

$$f(\theta, \phi) = f(\theta) = \text{antilog}[-6 \times 10^5 (G-1) \theta^2] \quad (5)$$

$$G = k4\pi^2/\lambda^2 = 109.66kD^2F^2 \quad (6)$$

where k , D , F , and θ are, respectively, the antenna efficiency, the antenna aperture diameter in meters, the receive carrier frequency in GHz, and the off-axis angle from the antenna boresight axis in degrees.

In general, the antenna pattern is given with respect to the spherical coordinate system whose Z -axis coincides with the antenna boresight axis. In this case, determination of the limits of the

double integral over the solid angle is not directly possible. However, through coordinate transformations¹⁰, the antenna pattern can be expressed as $f(\theta^*, \phi^*)$ in the spherical coordinate system whose Z -axis is pointed to the center of the sun (as shown in Figure 5). Then, Eq. (4) can be rewritten as:

$$Ta = \frac{T_s G}{4\pi} \int_0^{.25\pi} \int_0^{2\pi} f(\theta^*, \phi^*) \sin\theta^* d\theta^* d\phi^* \quad (7)$$

The double integral can easily be carried out by a numerical integration procedure such as Romberg Integration, or Simpson's Rule¹¹.

The solar disk temperature, T_s , varies in a complicated fashion. It follows the sun's eleven year cycle, and depends on the radio emission from the sun. This emission has three distinct components, originating from the quiet sun, the bright regions, and transient disturbances such as flares, respectively¹². As an approximation, T_s may be estimated from the following relation:

$$T_s = 120000F^{0.75} \quad (8)$$

which is more or less the average of the Allen curve and Van de Hulst curve given in Reference 13.

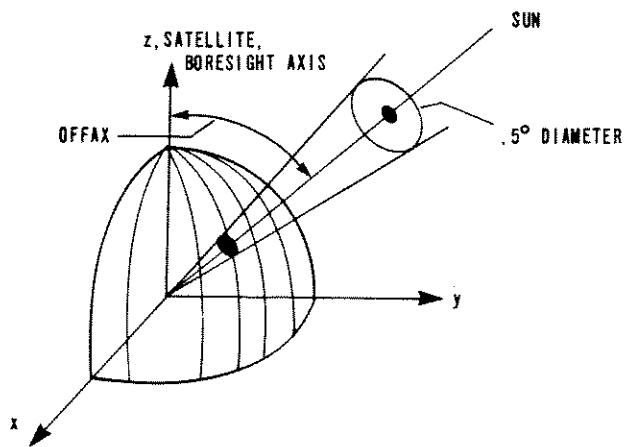


FIGURE 4: THE SUN'S SOLID ANGLE (SHADED) AND THE OFF-AXIS ANGLE OFFAX: Z-AXIS POINTED TO THE SATELLITE.

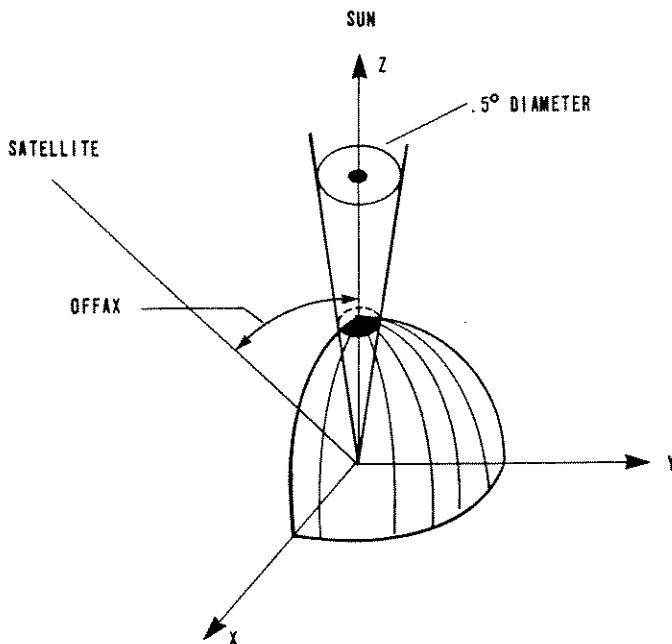


FIGURE 5: THE SUN'S SOLID ANGLE (SHADED) AND THE OFF-AXIS ANGLE OFFAX: Z-AXIS TO THE SUN.

SATELLITE: TDMA										
SUN TRANSIT OUTAGES FOR 1982			TDMA							
SATELLITE LONGITUDE 104° E 0°										
STATION: ODA	DIAMETER	10.00 (METERS)								
	LATITUDE	45.02.30								
	LONGITUDE	75.41.20								
SYSTEM NOISE TEMP = 150.0 (KELVINS)										
ES-SAT ELEVATION (SAT COORDS) = 6.712 (DEG.)										
C/N-DEGRAD THRESHOLD = 2.0 (DB)										
MONTH	DAY	TIME (GMT) (HH:MM)	SUN DEC (DEG.)	OFF-AXIS (DEG.)	C/N-DEGRAD. (DB)	DURATION (MIN.)				
FEB.	28	19:43	-7.859	1.147	2.6	2.2				
MAR.	1	19:43	-7.480	7.7	7.7	7.4				
MAR.	2	19:43	-7.098	386	14.5	9.0				
MAR.	3	19:43	-6.715	.003	20.0	9.4				
MAR.	4	19:42	-6.331	.382	14.7	9.0				
MAR.	5	19:42	-5.945	7.7	7.7	7.4				
MAR.	6	19:42	-5.558	1.155	2.4	1.8				
OCT.	7	19:18	-5.596	1.116	3.2	3.0				
OCT.	8	19:18	-5.978	.735	7.7	7.4				
OCT.	9	19:18	-6.358	.354	15.4	9.0				
OCT.	10	19:18	-6.737	.025	19.9	9.4				
OCT.	11	19:17	-7.115	.402	14.0	9.0				
OCT.	12	19:17	-7.491	.778	7.7	7.0				
OCT.	13	19:17	-7.865	1.153	2.5	2.0				

TABLE 1: A SAMPLE PRINTOUT ACCORDING TO STATION (OTTAWA 3) AND SERVICE (TDMA) FOR 1982.

The C/N-degradation in dB at the demodulator input can then be computed from the following:

$$\Delta(C/N) = 10 \log [(T_{sys} + T_a) / T_{sys}] \quad (9)$$

where T_{sys} is the equivalent system noise temperature at the receiver input in the absence of a sun transit. T_{sys} includes the equivalent noise temperature of uplink noise, noise generated in the transponder, intermodulation and interference noise, downlink noise, and noise generated by the earth station receiver, all referred to the receiver input.

***** SUN TRANSIT OUTAGES FOR 1983 SATELLITE LONGITUDE: 104.30° E			
OCT 10			
TIME (GMT) (HH MM)	STATION	SERVICE	C/N-DEGRAD. (dB)
18:35	WNE	CBRCRV	8.7
18:37	TUN	CBRCRV	16.3
18:38	BUY	BCTEL	4.6
18:38	UKK	AGTR	9.6
18:40	CGZ	GBILFTU	9
18:40	CAZ	LRDIMA	1.2
18:40	CAJ	DMFAX	2.0
18:40	SHR	MWTR	14.1
18:40	HYR	MWTR	8.8
18:40	LMA	CANCOM	.2
18:41	YKE	CBRCRV	13.3
18:41	HIB	MWTR	14.1
18:42	SDT	MWTR	12.9
18:42	CDF	MWTR	10.3
18:42	COE	AGTR	10.3
18:43	YKE	SASKTR	6.3
•			
•			
•			

TABLE 2: A SAMPLE PRINTOUT ACCORDING TO ASCENDING ORDER OF THE SUN TRANSIT PEAK TIME ON OCT. 15, 1982.

THE PROGRAMS

Based on the method described above, two programs, written in FORTRAN'77 and named SUNT1 and SUNT2, have been developed for use on an HP-1000 computer system. SUNT1 generates detailed information on sun transit predictions, and SUNT2 is used to handle cases of large data bases.

The solar disk temperature can be either specified or estimated from Eq. (8). The antenna gain pattern can be either supplied from a data file or computed from Eqs. (5) and (6). Other input data include: the year considered, the satellite's longitude, the maximum tolerable C/N-degradation (outage threshold), the downlink carrier frequency, the earth station data and service data. The last two can be entered manually or fetched from user-supplied data bases. The earth station data base contains names, codes,

longitudes, latitudes and diameters of all earth station antennas. The service data base consists of names, codes and number of served earth stations for all services; and for each service, earth station identification indices in the earth station data base, and equivalent system noise temperatures.

The results can be printed out according to station and service and/or according to the ascending order of the sun transit outage peak time (time of the coplanar instant). Sample printouts are shown in Tables 1 and 2.

PREDICTION ACCURACY

Numerous sun transit outage measurements have been taken by Telesat Canada in the past. The most recent one is shown in Figure 6. As compared with the predictions, the differences in the times of the coplanar instant are within half a minute and those in the C/N-degradation are within a few dB.

The accuracy in the time of the coplanar instant is more than sufficient for our purposes. However, it could be improved further by employing a better model to predict the sun's position, a better model to describe the earth's geometry, and by taking into consideration the earth station's altitude and the earth station's pointing deviation for the nominal.

The discrepancy in the C/N-degradation is due mainly to the variation of the solar disk temperature, which is difficult to predict, and due to the assumption that the sun is 0.5° disk source of the constant temperature. This assumption is not accurate for cases involving high gain (narrow beamwidth) antennas since the brightness distribution over the solar disk is not uniform. This can be seen in Figure 7. Nevertheless, there is not much one can do to improve the accuracy of the C/N-degradation.

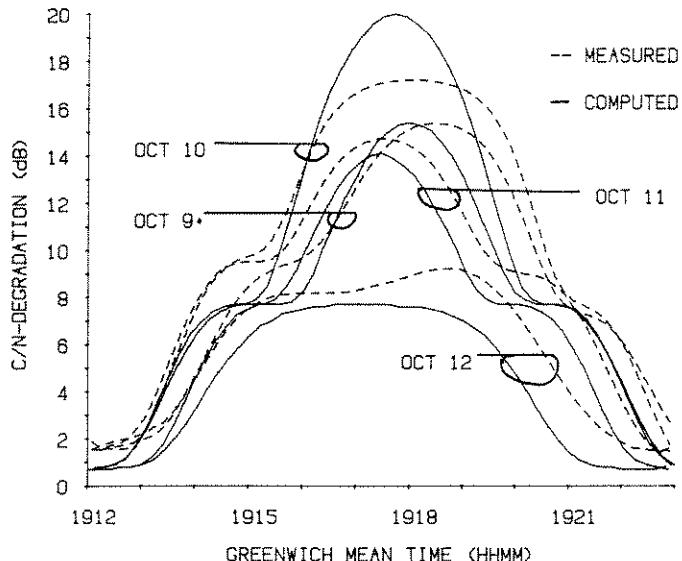


FIGURE 6: A SAMPLE OF SUN TRANSIT MEASUREMENT AND THE CORRESPONDING PREDICTION FOR THE TEN METER EARTH STATION OTTAWA 3 (POINTED TO THE ANIK-B SATELLITE) IN OCT., 1982

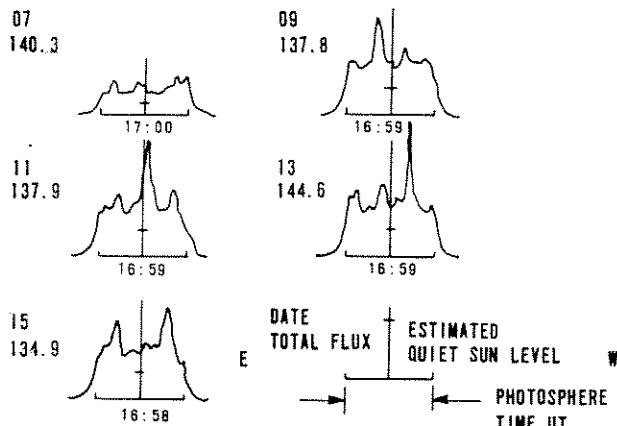


FIGURE 7: ONE DIMENSIONAL BRIGHTNESS DISTRIBUTION OVER THE SOLAR DISK IN OCT. 1982¹⁴

prediction, since the brightness distribution over the solar disk is measured and available in only one dimension¹⁴ and cannot be extrapolated accurately more than a couple of days in advance.

CONCLUSION

A method and computer programs used to generate accurate sun transit predictions have been developed. Comparison with measurements have been performed. The accuracy in the prediction of sun transit outage peak is within half a minute and that of C/N-degradation is within a few dB.

ACKNOWLEDGMENT

The authors wish to acknowledge the assistance of H.L. Hoang, A.J. Grise, S.P. Singh of Telesat Canada, and of M.B. Bell and H.P. Gagnon of the Herzberg Institute of Astrophysics, National Research Council Canada.

REFERENCE

1. C.W. Lundgren, "A Satellite System for Avoiding Serial Sun Transit Outages and Eclipses," The Bell System Technical Journal, pp. 1943-1972, Oct. 1970.
2. S. Ito, H. Fukuchi, C. Ohuchi, H. Hirano, I. Ono, "Statistics of Rain Attenuation and other Environmental Effects Associated with the BSE Satellite Down-Link at 12 GHz in Japan," IEEE Transactions on Broadcasting, pp. 131-138, Dec. 1982.
3. J. Loeffler, "Planning for Solar Outages," Satellite Communications, pp. 38-40, April 1983.
4. Superintendent of Documents, U.S. Government Printing Office, Nautical Almanac, Washington D.C., 20402.
5. S. Newcomb, "Tables of the Motion of the Earth on Its Axis and Around the Sun," APAE (Astronautical Papers prepared for the use of the American Ephemeris and Nautical Almanac), Vol. 6, pp. 1-169, 1895.
6. T. Ehara, "Prediction of Solar Eclipses by the Moon (Moon Solar Eclipses) Occuring at the Geostationary Orbit," NHK Laboratories Note, Serial No. 237, June 1979.
7. H.C. Ho, "On the Determination of the Disk Temperature and the Flux Density of a Radio Source using High Gain Antennas," IRE Transactions on Antenna and Propagation, pp. 500-501, Sept. 1961.
8. Report No. 763, Recommendations and Reports of the CCIR, Vol. 8, Geneva, 1980.
9. L.V. Blake, Antennas, Wiley and Sons, New York, 1966.
10. M.R. Spiegel, Mathematical Handbook of Formulas and Tables, Schaum's Outline Series. New York: McGraw-Hill, 1968.
11. R.W. Hornbeck, Numerical Methods. New York: Quantum Publishers, 1975.
12. M.R. Kundu, Solar Radio Astronomy. New York: John Wiley and Sons, 1965.
13. F.I. Shimabukuro and J.M. Tracey, "Brightness Temperature of the Quiet Sun at Centimeter and Millimeter Wavelengths," The Astrophysical Journal, pp. 777-782, June 1968.
14. M.B. Bell, H.P. Gagnon, and J.D. Moore, "Observations of Solar Flux at the Algonquin Radio Observatory on 2800 MHz and the Dominion Radio Astrophysical Observatory on 2700 MHz Monthly Reports January 1982 - December 1982," Report No. ARO-12, NRCC No. 21091, Herzberg Institute of Astrophysics, National Research Council Canada, March 1983.

APPENDIX A: COMPUTATION OF AZ AND EL

AZ and EL, as illustrated in Figure 1, are the azimuth and elevation angles of the earth station with respect to the satellite. They should not be confused with the more familiar azimuth and elevation angles of the satellite with respect to the earth station. By convention here, AZ takes a negative value if the earth station is east of the satellite, and EL takes a negative value if the earth station is located in the southern hemisphere.

The earth has been modelled as a spherical ellipsoid. Thus the earth's radius, \overline{OE} , at the latitude of the earth station, ESLAT, may be calculated as follows:

$$\overline{OE} = R / [1 + e^2 \sin^2(ESLAT) / (1 - e^2)]^{1/2} \quad (A1)$$

where

R = equatorial radius of the earth
 $= 6378.16$ km

e = eccentricity of the earth
 $= 0.08182$

Resolving \overline{OE} into components parallel and normal to the equatorial plane gives:

and $\overline{OI} = \overline{OE} \cdot \cos(\text{ESLAT})$ (A2)

and $\overline{EI} = \overline{OE} \cdot \sin(\text{ESLAT})$ (A3)

Let ESLON be the longitude of the earth station and SATLON be the longitude of the satellite and define their difference as A, so that:

$A = |\text{ESLON} - \text{SATLON}|$ (A4)

and $\overline{IM} = \overline{OI} \cdot \sin A$ (A5)

Define \overline{OS} as the nominal radius of the geostationary orbit, equal to 42164.2 km. Then,

$$\overline{SI} = |\overline{OS}^2 + \overline{OI}^2 - 2 \cdot \overline{OS} \cdot \overline{OI} \cdot \cos A|^{1/2} \quad (\text{A6})$$

Finally,

$$|AZ| = \arcsin(\overline{IM}/\overline{SI}) \quad (\text{A7})$$

$$|EL| = \arctan(\overline{EI}/\overline{SI}) \quad (\text{A8})$$

APPENDIX B: COMPUTATION OF SE, SK AND EK

From Figure 3,

$$\overline{SE} = (\overline{SI}^2 + \overline{EI}^2)^{1/2} \quad (\text{B1})$$

where \overline{SI} and \overline{EI} may be computed from equations (A6) and (A3), respectively.

Let SUNLAT be the sun's latitude at the noncoplanar instant, and SUNLONc and SUNLON, the sun's longitude at the coplanar and noncoplanar instants, respectively. Define α as the difference between the sun's longitude at the two instants, so that

$$\alpha = |\text{SUNLON} - \text{SUNLONc}| \quad (\text{B2})$$

Then,

$$\overline{SJ} = \overline{SI} / \cos \alpha \quad (\text{B3})$$

and

$$\overline{SK} = \overline{SJ} / \cos(\text{SUNLAT}) \quad (\text{B4})$$

Also,

$$\overline{KJ} = \overline{SJ} \cdot \tan |\text{SUNLAT}| \quad (\text{B5})$$

and

$$\overline{IJ} = \overline{SI} \cdot \tan \alpha \quad (\text{B6})$$

Finally,

$$\overline{EK} = (\overline{IJ}^2 + |\overline{EI} + \text{sgn}(\text{SUNLAT} \cdot \text{ESLAT}) \overline{KJ}|^2)^{1/2} \quad (\text{B7})$$

where

$$\text{sgn}(x) = \begin{cases} 1 & x \geq 0 \\ -1 & x < 0 \end{cases}$$

Xuyen T. Vuong obtained the B.S.E.E. degree with honors from California State University, Sacramento in 1971, the M.Eng. (Electrical) degree from Carleton University, in 1973 and the Ph.D. (Systems Engineering) degree from University of Western Ontario, in 1976. He joined Telesat Canada as a senior engineer in 1981, where he is now head of the Communication Systems Analysis Section. Dr. Vuong has taught computer science and electrical engineering courses at Concordia University and University of Ottawa, and worked for Spar Aerospace Ltd. and Canadian Astronautics Ltd.

R. John Forsey obtained the B. Eng. (Electrical) degree from McGill University in 1973 and the M.Sc. degree from Queen's University in 1976. Mr. Forsey was with RCA Ltd. from 1973 to 1975 and Bell Northern Research from 1976 to 1978. He joined Telesat Canada, a domestic satellite operating company in 1978, where he is manager of the Systems Studies and Licensing Group.